منابع مشابه
Sample-oriented Domain Adaptation for Image Classification
Image processing is a method to perform some operations on an image, in order to get an enhanced image or to extract some useful information from it. The conventional image processing algorithms cannot perform well in scenarios where the training images (source domain) that are used to learn the model have a different distribution with test images (target domain). Also, many real world applicat...
متن کاملA morphological pyramidal image decomposition
A multiresolution image representation is presented in which iterative morphological filters of many scales hut identical shape serve as basis functions. Structural pattern decomposition is achieved by subtracting successive layers in the multiresolution representation. The representation differs from established techniques in that the code elements have a well defined location and size. The re...
متن کاملevaluation of dissimilarity measures for image retrieval and classification
in this paper, the performance of 11 different distances for image retrieval and classification, based on color, shape and texture, is evaluated. the precision-recall measure and the correct classification rate of the k-nn classifier are used to evaluate retrieval and classification performances, respectively. the experimental results for a database of 1000 images from 10 different semantic gro...
متن کاملRobust Method for E-Maximization and Hierarchical Clustering of Image Classification
We developed a new semi-supervised EM-like algorithm that is given the set of objects present in eachtraining image, but does not know which regions correspond to which objects. We have tested thealgorithm on a dataset of 860 hand-labeled color images using only color and texture features, and theresults show that our EM variant is able to break the symmetry in the initial solution. We compared...
متن کاملCRFs for Image Classification
We use Conditional Random Fields (CRFs) to classify regions in an image. CRFs provide a discriminative framework to incorporate spatial dependencies in an image, which is more appropriate for classification tasks as opposed to a generative framework. In this paper we apply CRFs to two image classification tasks: a binary classification problem (manmade vs. natural regions in the Corel dataset),...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Cluster Computing
سال: 2017
ISSN: 1386-7857,1573-7543
DOI: 10.1007/s10586-017-1443-x